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Abstract
Analysis for soil organic carbon (SOC) content is a key component of sustainable soil fertility management. 
Estimating this parameter using traditional methods is time – consuming and may be inappropriate for 
large scale monitoring.  This study assessed the potential of a combined application of diffuse reflectance 
spectroscopy and the partial least square regression (PLSR) to analyse and predict SOC in soils. Fifty three 
(53) topsoil samples were collected from areas with differing land use activities, and then analysed for SOC 
using a Flash 2000 organic elemental analyzer. Diffuse reflectance spectra of soil samples were measured 
in the visible near infrared (VNIR) and the mid-infrared (MIR) wavelength ranges using a Ger3700 VNIR 
spectrophotometer and a FT-IR spectrometer respectively. Partial least squares regression (PLSR) was used 
to develop prediction models. Models developed from both spectra predicted SOC with accuracy close to 
the elemental analyzer (R2 > 0.80) and offers a reliable alternative to the traditional laboratory analyses. On 
comparison using the coefficient of determination (R2), ratio of performance to deviation (RPD) and the root 
mean square error (RMSE), VNIR spectra offer better accuracy with an R2 = 0.90, RPD = 3.12 and RMSE 
= 0.07 Log10 %SOC compared to the MIR spectra with an R2 = 0.85, RPD = 3.09 and RMSE = 0.08 Log10 
%SOC.
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Introduction
Quantification of soil organic carbon (SOC) 
content is crucial component of soil fertility 
management. SOC enhances soil structure and 
water retention. It serves as the driving force 
of all biological activities providing energy 
and nutrients for the teeming soil organisms 
(Craswell and Lefroy, 2001). Most often, 
decisions whether or not to plant and/or to 
deploy specific soil management procedures 
are usually made based on the results of 
quantitative soil SOC analysis.
Traditional procedures for quantifying SOC 
such as chromate oxidation and combustion 
are expensive and time consuming (McCarty 
and Reeves, 2006). The ‘loss-on-ignition’ 
analytical procedure though cheaper and 
rapid has also been shown not to be totally 
accurate due to the decomposition of certain 
mineral fractions such as kaolinite, and iron 
oxyhydroxides at high temperatures required 
by this method (Lal et al., 2001). One of the 
emerging alternatives which permits rapid 
and cost-effective quantification, and can 

potentially yield comparable results to the 
traditional methods is chemometrics (Cezar 
et al., 2019; Bellon-Maurel and McBratney, 
2011; Schwartz et al., 2009; Brown et al., 
2006; Wetterlind et al., 2008).
The predictive accuracies of models developed 
for SOC estimation reported by researchers 
have been varied. The mid-infrared (MIR) 
spectra of soil are characterised by well-
defined features due to fundamental vibrations 
of functional groups and may be well suited 
for SOC prediction purposes due to their 
higher specificity (Chen et al., 2016; Knox 
et al., 2015; Bellon-Maurel and McBratney, 
2011; Reeves, 2010). However, while MIR 
spectroscopy has been a major tool for 
qualitative analysis, it has been argued that 
its use for quantitative analysis in undiluted 
samples such as soils may be complicated 
due to the presence of spectral distortions and 
nonlinearities (Culler, 1993).
Quantitative predictions of SOC using visible 
near infrared (VNIR) diffuse reflectance 
spectroscopy requires little to no sample 
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preparation compared to the MIR which 
requires additional sample preparation and 
the use of spectrometers that are considerably 
expensive (Knadel et al., 2013). Also, despite 
weak absorptions by organic functional groups 
in the VNIR, the general absorption due to soil 
organic matter in the visible region is obvious 
(Gholizadeh et al., 2013). SOC content of soils 
influences soil colour, an important factor for 
prediction in the visible region (Udelhoven 
et al., 2003), implying that the VNIR region 
of the electromagnetic spectrum may interact 
better with SOC than the infrared region alone. 
Consequently, VNIR spectra could have 
improved predictive potentials when used 
in calibrating models for SOC estimations 
(McDowell et al., 2012; Viscarra Rossel et al., 
2006).
Some studies have been carried out to 
estimate SOC in the laboratory and under 
field conditions using VNIR and MIR diffuse 
reflectance spectroscopy. However, to the best 
of our knowledge, there have been few studies 
comparing the accuracies of SOC predictions 
using VNIR and MIR diffuse reflectance 
spectroscopy on the same set of samples. 
The VNIR diffuse reflectance approach is 
non-destructive and can be suitable for large 
scale soil monitoring where large number 
of samples are required for assessments. 
This study therefore sought to compare the 
predictive capabilities of MIR and VNIR 
diffuse reflectance spectra for prediction of 
SOC using spectra obtained from the same 
soil sample.

Materials and Methods

A total of 53 soil samples were collected at 
a depth of 10 cm from differing land use and 
land management activities within southwest 
England, a region delimited by the geographic 
coordinates 50°58’ to 50°96’ North and 3°13′ 
to 3°22’ West. The geology of this region 
contains light to medium textured soils 
characterized by slate, granite, gravel, kaolin 
and limestone (UKSO, 2021). The samples 
were collected from different landscape areas 
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and draining conditions. Each soil sample 
was air-dried and passed through 2 mm mesh 
sized sieves before all further analysis. pH 
was determined using an HI98129 electrode 
which had been calibrated with buffers pH 4.0 
and 9.0 prior to measurement. The particle 
size distribution (PSD) was assessed using the 
Mastersizer 3000 Laser Diffraction Particle 
Size Analyzer.

Soil Chemical Analysis
Total SOC was determined in 10 mg of ball 
milled soil subsamples using the Thermos 
Scientific Flash 2000 organic elemental 
analyzer with a reproducibility of 0.07% 
calculated using the  equation (Fearn, 2008): 

Where SEL is the standard error of laboratory, 
Ei is the difference between measurements 
and the estimated true value of a certified 
reference material.
Prior to analysis using the Flash 2000 organic 
elemental analyzer, a simple test for carbonates 
was done by checking the pH of soil samples. 
When soil samples possess pH less than 
7.4, it is concluded that the samples contain 
none to insignificant quantities of carbonates 
(Schumacher, 2002). Otherwise, samples are 
initially dried at 1050C overnight and treated 
with a combination of H2SO4 and FeSO4 to 
remove carbonates. All soils within this study 
have pH less than 7.4. Therefore:

Spectral Measurement
VNIR 
VNIR spectra of soil samples were obtained 
in a dark room with a Ger3700 VNIR 
spectrophotometer (350 - 2500nm) coupled 
with a light source made of a quartz-halogen 
bulb, and projected at 450 to the detector. The 
spectrophotometer has one Si array (350 - 1050 
nm) and two Peltier-cooled InGaAs detectors 
(1050 - 1900 nm and 1900 - 2500 nm). Spectral 



sampling interval of the instrument was 3nm 
at (350 - 1050 nm), 7nm at (1050 - 1900 nm) 
and 9.5nm at (1900 - 2500 nm).
A white reference panel of Spectralon 
calibrated for 100% of reflectance was scanned 
before each measurement to optimize the 
instrument in accordance with the Labsphere 
Reflectance Calibration Laboratory (LRCL, 
2009). Scans were taken from soil, tightly 
packed and levelled in petri – dishes at four 
positions by carefully rotating the petri dish at 
an angle of 900clockwise to increase precision 
of measurements. The replicate scans were 
then averaged to produce a single spectrum for 
each sample in line with the recommendations 
of Fiorio et al. (2010).

MIR
MIR spectra of soils were collected from ball 
milled subsamples using a Nicolet iS10 FT-
IR spectrometer (Thermo Fisher Scientific 
Inc., Madison, WI, USA). Spectral acquisition 
was performed by diamond attenuated total 
reflectance (MIR-ATR) spectroscopy over the 
spectral range 2500 – ~15400nm (4000–650 
cm-1), with spectral resolution of 4 cm-1 and 16 
scans per replicate.

Data Analysis and Model Development
Due to scatter effects and path length 
variations inherent in diffuse spectra, four 
common spectra pre-processing techniques 
were applied to the spectra. Techniques 
tested include Log10(1/B) transformation 
(where B is reflectance), standard normal 
variate coupled with the detrending (SNV-
DT) which reduces scatter effects and 
linearizes the spectra. Other tools tested 
include the Savitzky- Golay smoothing of the 
spectra (SG), and a combination of Savitzy-
Golay and derivatisation which smoothens, 
enhances resolution and eliminates baseline 
drift between spectra (Verboven et al., 2012). 
Spectra processing and statistical modeling 
were done using the Unscrambler-X 10 
(CAMO, Incorporation, Oslo, Norway).
Partial least square regression (PLSR) models 
were developed from VNIR and MIR diffuse 
reflectance spectra (x, predictor variables) and 

log10-transformed ETPH data (y, dependent 
variables), that approximated a Gaussian 
distribution after stabilizing the variance. 
Twenty four percent (24%) of the dataset 
was set aside for model validation while 
only 76% of each dataset selected using the 
Kennard – Stone algorithm was used for 
model calibration. Potential outliers were 
identified as samples with very high leverages 
and residuals.
The predictive ability of PLSR models 
is reported in terms of coefficient of 
determination (R2), root mean-square error 
(RMSE; Eq.1), percentage prediction error (% 
PE; Eq. 2), ratio of performance to deviation 
(RPD; Eq 3) (Cezar et al., 2019; Janik et al., 
2007; Brown et al., 2006).
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where n is the number of validation samples, 
SD is the standard deviation of the predicted 
validation values and Xhp is the largest 
measured data point within the validation set. 
According to Viscarra Rossel et al. (2006), 
very poor models show RPD < 1.0; poor 
models: 1.0 ≤ RPD ≤ 1.4; fair models:  1.4 
≤ RPD ≤ 1.8; good models: 1.8 ≤ RPD ≤ 2.0 
and very good models: 2.0 ≤ RPD ≤ 2.5; and 
excellent models have RPD > 2.5.

Results

Laboratory Analysis
The results of laboratory analyses show a wide 
variation in soil pH and a highly skewed SOC 
distribution (1.87-30.9%). The data was Log10 
–transformed to make it normal. Consequently, 
all PLSR models were developed based on 



Log10 – transformed SOC. Details about pH, 
particle size and laboratory measured SOC 
concentrations of soil samples are presented 
in Table 1.
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wavelengths of measurement. MIR spectra of 
soil samples covered a spectral range of 2500 
–16660 nm (4000 – 600 cm-1) and contained 
prominent features than the VNIR spectra. 

Figure 1 a) VNIR and b) MIR diffuse reflectance spectra of some of the soil samples used for 
this study showing absorbing functional groups

TABLE 1
Descriptive statistics of soil properties

na pH PSDb  SOC SDc Skewness
Sand Silt Clay

%
Calibration 40 4.9 – 7.2 54 - 60 26 - 30 7 – 12 1.87 – 30.9 5.15 1.81
Validation 13 4.7 – 7.1 53 - 60 26 - 29 7 – 10 2.02 – 21.4 5.45 1.54
Total 53 4.9 – 7.2 54 - 60 26 - 30 7 – 12 1.87 – 30.9 5.18 1.72
a Number of samples
b Particle size distribution
c Standard deviation

Qualitative Description of Spectra
Figure I illustrates the shape and variations 
observed in both the VNIR and MIR spectra. 
VNIR Spectra of all samples follow a similar 
shape with absorptions observed at ~400 
– 900,  ~1400–1450 nm, 1626 – 1750 nm, 
1910–1930 nm and at ~2100 and 2500 nm. 
In general, samples with higher SOC content 
were observed to be relatively darker in tone 
and had lower reflectance across the total 

Prominent absorption features present in the 
MIR spectra include the steeped absorption at 
~7812 – 9852nm, absorptions around 5680 - 
6200 nm, at ~3500 – 3850 nm and at ~ 3070 
- 3360 nm. MIR spectra of soils used in this 
study can be seen to be less affected by shifting 
baselines and are clearly separable at 2760 – 
3730 nm and at 5540 – 8470 nm (Figure 2).



Spectra Pre-processing 
A total of five (5) PLS models were generated 
each for both VNIR and MIR spectra 
using different pre-processing approaches. 
Predictive accuracy and stability of PLSR 
models (evaluated using the R2, RPD, RMSE 
and optimum number of latent factors) 
indicate that only Log10(1/R) transformation 
significantly improved model quality. In 
particular, the SNV-DT, a standard pre-
processing technique used to normalise 
spectral data, remove scatter effect, and correct 
for baseline effect lowered the RPD value for 
VNIR spectra (from 1.60 to 1.53) as opposed 
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to improving the MIR spectra (Table II).

Partial Least Square Regression (PLSR)
The results of the model performance are 
summarized in Figure II, a scatter plot that 
compares the measured and predicted SOC 
concentrations using PLSR analysis for the 
calibration and validation data sets. PLSR 
models to predict SOC from both the VNIR 
and MIR spectra performed excellently with 
validation statistics R2 =0.90 and 0.90; and 
RPD = 3.12 and 3.09 for VNIR and MIR 
respectively (Table II).  The PLSR- VNIR 
models showed a lower RMSE (0.07 Log10 

TABLE 2
Partial least square model evaluation statistics from different spectral pre-processing methods applied to VNIR 

and MIR diffuse reflectance spectra

VNIR MIR

Pre-processing R2
v RMSEv RPD R2

v RMSEv RPD

Log10 %SOC Log10 %SOC

RAW 0.62 0.16 1.60 0.80 0.12 2.03

Log10(1/R) 0.90 0.07 3.12 0.90 0.08 3.09

SG 0.61 0.16 1.57 0.80 0.12 2.06

SG-1st D 0.64 0.14 1.32 0.77 0.14 2.12

SNV-DT 0.73 0.13 1.53 0.86 0.09 2.69

RAW = averaged raw spectra; Log10(1/R) = Absorbance, where R is the reflectance value; SG = 5 window 
smoothing Savitzky–Golay filter; SG-1st D = first derivative of 5  windowsmoothing Savitzky–Golay filter; 
SNV-DT = standard normal variate coupled with detrend correction. The best PLSR models are boldened

Figure 2 Scatter plots of measured vs. Predicted SOC values based on PLSR modeling of  
a) VNIR  and  b) MIR diffuse reflectance spectra of soil
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%SOC) compared to and 0.08 Log10 %SOC for 
PLSR-MIR (12.5% lower than MIR). Overall, 
this result demonstrates that estimations of 
SOC using the VNIR and MIR spectra produce 
similar results though validation parameters 
are comparatively better for the PLSR - VNIR 
model.

Correlation Coefficients of Wavelengths
A plot of regression coefficients illustrating the 
importance of wavelength variables within the 
PLSR models developed for the estimation of 
SOC illustrated in Figure III. Each coefficient 
within this plot summarizes the association 
between each predictor variable (wavelength) 
and a given response (SOC). 
The most important peaks used to predict SOC 
in the PLSR-VNIR model include 436, 478, 
499, 521 and 607 nm in the visible range and 
789, 843, 921, 1025, 1286, 1366, 1444, 1970, 
2020, 2308 and 2481 nm in the near-infrared 
range.  Concerning the PLSR-MIR model, the 
important peaks appear at 2698, 3429, 4387, 
5390, 5879, 6631, 7334, 8907, 11103, 12899 
and 14525 nm.

Discussion

The distinct absorption minima at ~1400–
1450 nm and ~1910–1930 nm observed 
within the VNIR spectra of soil samples are 
characteristic of hydroxyl and water (Fortes 

and Dematte, 2006) while the steep slope found 
at ~400 - 900 nm has been associated with 
iron and iron oxide minerals such as goethite 
and hematite (Vaughan, 1996) but can also 
contain overtones of C-H, N-H absorptions 
of alkyls, aromatics and amines (Viscarra 
Rossel and Behrens, 2010).  Absorption band 
around 1626 – 1750 nm is reflective of C-H 
bonds (Stuart, 2004) while features at ~2100 
and 2500 nm  may be attributed to C-O 
absorptions of polysaccharides;  C-H2, C-H3, 
NH3 absorptions of alkyls and aromatics; and 
Si-OH and –OH absorptions in minerals(Clark 
et al., 1990).
Within the MIR spectra of soil samples, 
absorption feature at ~7812 – 9852 nm may be 
associated with clay minerals such as smectite, 
illite, kaolinite and silica (Byrappa and Suresh 
Kumar, 2007).  Absorptions around 5680 - 
6200 nm can be due to C-H and C-O  bonds of 
organic compounds such as amides, carboxyl, 
and/or silicate minerals such as quartz and 
kaolinite (Stuart, 2004) while absorptions at 
~3500 – 3850 nm and at ~ 3070 3360 nmare 
likely associated with C-H bonds in alkyl 
groups (Gaffey et al., 1993; Stuart, 2004).
Spectral quality is the most important factor 
in VNIR and MIR spectroscopy calibrations 
because reliable predictions cannot be made 
from poor spectra (Gholizadeh, 2013). Pre-
processing spectra is therefore required prior 
to calibrations to reduce interferences caused 
by variations in particle-size distribution, 

Figure 3 Regression coefficient curves obtained from PLSR models 
a) VNIR, and  b) MIR diffuse reflectance spectra of soil



noise or any other inappropriate information 
that cannot be accommodated by modeling 
techniques (Brunet et al., 2007; Van Waes et 
al., 2005). Results from pre-processing of soil 
spectra show that there is no “best” spectral 
data pre-processing technique and soil spectra 
should be carefully studied to identify which 
technique best suits the spectra/ soil property 
under investigation. This will ensure that 
absorption features that are important to 
the modeling of the soil property under 
investigation is not screened out.
PLSR models built from VNIR and MIR diffuse 
reflectance spectra within this study compares 
favourably with results of models developed 
for SOC by similar studies (Mcdowell et al., 
2012; McCarty et al., 2010; Mouazen et al., 
2010; Vasques et al., 2010; ViscarraRossel and 
Behrens, 2010; Vasques et al., 2009). Lower 
R2 and RPD values have also been reported by 
Knox et al. (2015): (0.86/ 2.60), Sarkhot et al. 
(2011): (0.85 /2.59) and Vasques et al. (2008): 
(0.79 / 2.14) for R2 and RPD respectively.
RMSE values recorded in past studies vary 
considerably, with some lower and others 
higher than the values obtained in this study. 
The range and composition of SOC in soils 
used for the various studies also varied widely 
i.e. <1% - 56% (Mcdowell et al., 2012), ~10% 
(McCarty et al., 2002; Sarkhot et al., 2011), 
~27% (Vasques et al., 2008) and ~2 – 31% 
within this study. RMSE values are unique 
to each calibration/validation (Neill and 
Hashemi, 2018) and will most likely reflect 
the range of values used in the modeling, 
contributing to the differences in RMSE 
values across studies. Irrespective, a robust 
model is that with the lowest RMSE.
This study demonstrates that the VNIR 
wavelength range can perform just as well 
or better than the MIR wavelength region for 
estimation of SOC. Similar position was held 
by Jia et al., (2017) and Mcdowell et al. (2012) 
who concluded that VNIR PLSR models 
have excellent prediction qualities. More so, 
assessing SOC quality in most agricultural 
and industrial applications does not always 
require precision, but rather a classification 
of the soil condition. The VNIR spectra used 

in this study were obtained from air-dried 
and sieved soils. However, some studies have 
also generated fair regression models from 
VNIR spectra of field intact soils (Li et al., 
2015; Charkraborty et al., 2010) implying 
that measurements can be taken insitu with 
lesser effects of interferences from soil 
properties such as moisture and particle size 
distribution on the modeling. MIR spectra are 
however obtained from processed ball milled 
homogenous soils increasing the time and cost 
of sample collection and/or preparation.
In the VNIR region, important absorptions 
around 436, 478, 499 nm can be attributed to 
blue colour absorption (Tekin et al., 2012), 
while absorbance peak near 521, 607, 789, 
843 nm can be due to the presence of iron 
hydroxides or oxides found in goethite and 
hematite (Ben-Dor et al., 2008; Viscarra Rossel 
& Behrens, 2010). Absorption band found 
around at 843 nm has been associated with 
the functional groups present in soil organic 
matter (BenDor  et al., 1999). The featured 
absorption bands around 1444, 1970, 2020, 
2308 nm have also been discussed for their 
relationships with clay minerals, soil moisture 
content, and organic matter content (Hong et 
al., 2018; Nocita et al., 2014; Viscarra Rossel 
& Behrens, 2010; Thomasson et al.,, 2001). 
Absorption peaks  around 2308 and 2481 
nm in the near-infrared are diagnostic of  Al-
OH bend and O-H stretch absorptions in clay 
mineral (Clark et al.,  1990). 
In the MIR region, important spectral 
signatures around 8907, 11103, 12899 nm can 
be from Si–O stretching vibrations from quartz 
while bands around 2698 nm are associated 
Al-OH present in kaolinite clays (Viscarra 
Rossel et al., 2006). Absorptions around 2900 
– 3300 nm resonates strongly with C-H and 
O-H bonds in organic components (Viscarra 
Rossel et al., 2006).

Conclusion

This study demonstrated the ability of the 
combined application of diffuse reflectance 
spectroscopy and the PLSR method to 
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analyse and predict SOC concentrations in 
soils using the VNIR and the MIR regions 
of the electromagnetic spectrum. The main 
conclusions are:

Both the VNIR and the MIR diffuse 
reflectance spectroscopy are useful tools for 
the prediction of SOC in soils. They both 
offer a reliable alternative to the traditional 
laboratory analyses.
VNIR diffuse reflectance spectra give a 
more robust model quality for SOC content 
compared to the MIR diffuse reflectance 
spectra.  They offer a reliable alternative to 
the MIR and to the traditional laboratory 
analyses which are expensive, complex and 
time consuming.
The PLSR gives strong correlated results 
of SOC from a combination of diffuse 
reflectance spectra and traditional laboratory 
measurements. 
Not all pre-processing tools improved spectral 
quality. The Log10(1/B) transformation was 
more effective and significantly improved 
both the VNIR and the MIR spectra within 
this study.
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