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Abstract
The multipurpose species Vachellia tortilis (umbrella thorn) is a woody plant whose parts are extensively 
used for food, feed, traditional pharmacopoeia, energy, and handicrafts. The species also provides multiple 
ecological benefits. This study aims at assessing the impact of climate change on the geographical 
distribution of V. tortilis in Eastern Niger, by analyzing the climatic factors influencing its current distribution 
and predicting its future distribution areas under different climate scenarios. Species occurrence data were 
collected and combined with bioclimatic data derived from the WorldClim database and vegetation data. 
Two climate models were used for future projections (RCP 4.5 and RCP 8.5). Results from the Jackknife 
test showed that five variables contribute significantly to the models. V. tortilis has a wide distribution, being 
present in all agroecological zones, with a high concentration in the Sahelian zone. Future climate projections 
for 2055 indicate an increase in the current vegetational range of species of 19.8% to over 30%. However, the 
potential distribution of the species is not compromised by the 2055 climate projections or local disturbance 
factors. The species will remain highly suitable for the study area, continuing to provide all the ecosystem 
services it offers.
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Introduction

The diversity of biological resources has been 
a central theme for several decades, bringing 
together multiple disciplines not only for its 
conservation but also for its sustainable use 
(Thiombiano et al., 2006). Plant diversity 
is vital for human survival and well-being. 
In addition to cultivated species, many wild 
plants continue to play an important role in 
meeting local needs for food, fuel, medicine, 
and building materials (Scheldeman and 
Van Zonneveld, 2012). However, with the 
increasing threats to biodiversity, some species 
are becoming increasingly rare in their natural 
habitats. In addition to anthropogenic threats, 
climate change has emerged as a major threat 
to the survival of species and the integrity of 
ecosystems worldwide (Heller and Zavaleta, 

2009; Sala et al., 2001). Understanding the 
specific properties of these changes, which 
may impact species or their habitats, is central 
to adaptation strategies (Heller et al., 2009).
Climate change will have numerous complex 
repercussions on trees with the most visible 
consequences being modifications in species' 
distribution areas (Hughes, 2000; Gbesso et 
al., 2013). Species distribution is expected 
to be affected by climate change, which may 
act as a limiting factor for species location 
(Fournier et al., 2017). The risk of species 
extinction due to the unexpected impacts of 
climate change is high. Understanding how 
local species are distributed is an essential 
prerequisite for effective conservation 
strategies (Issoufou et al., 2022). Ecological 
niche modeling (ENM) has proven to be a 
useful tool for identifying habitats, predicting 

West African Journal of Applied Ecology, vol. 32(2), 2024: 59 - 70



species presence, and assessing the effects of 
climate change on different taxonomic groups 
(Pecchi et al., 2019).
The ability to model the geographic 
distribution of a species based on occurrence 
data and environmental information relies on 
the assumption that abiotic factors directly or 
indirectly control species distribution (Austin, 
2002). Generating and projecting species 
distribution patterns require environmental 
data layers that provide discriminatory power 
regarding species presence and absence. 
Correlative niche modeling approaches, 
which rely on statistical associations between 
species occurrences and environmental 
variables, are frequently used (Peterson et 
al., 2011; Alvarado-Serrano and Knowles, 
2014). WorldClim bioclimatic variables (19 
variables) are among the most widely used 
environmental data layers due to their high 
resolution, global coverage, and availability 
for both historical and future climate scenarios 
(Hijmans et al., 2005).
It is increasingly likely that fluctuations in 
climatic variables such as precipitation and 
temperature will affect biological diversity 
and the geographical distribution of favorable 
habitats for species (IPCC, 2007; Fandohan 
et al., 2013). In a changing environment, 
predicting variations in species distribution is 
crucial, particularly for species management 
and domestication (Elith and Leathwick, 
2009). Ongoing and projected climate change 
has revitalized interest in spatiotemporal 
species distribution studies. Phytogeography, 
as a science, studies the distribution of species 
across the globe (Schnell, 1972). It relies on 
cartographic tools, with the distribution map 
being the primary instrument. This allows 
for precise knowledge of the geographical 
distribution of a species and the identification 
of the factors that control it (Lebrun, 2001).
The distribution of species in equilibrium 
with their environment can thus be considered 
the spatio-temporal dimension of the niche. 
However, one of the main causes of species 
distribution changes is habitat destruction. 
Understanding the reasons behind habitat 
modification and species responses is an 
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important research challenge in the current 
climate and biodiversity crisis. Changes in 
geographic distributions of species in response 
to climate change have been studied first in 
higher animals (Root et al., 2003; Devictor 
et al., 2008) and plants (Penuelas and Boada, 
2003; Lenoir et al., 2008), typically through 
retrospective approaches, comparing current 
and past distributions.
Recent advancements in statistical techniques 
and geographic information systems (GIS) 
allow for more reliable and accurate distribution 
models (Elith and Leathwick, 2009). These 
models help enhance understanding of species 
ecology and enable more accurate predictions. 
Among these models are Maximum Entropy 
models (Phillips et al., 2006), which relate 
species presence data with environmental 
variables to estimate a "bioclimatic envelope," 
within which the species is presumed to 
survive, develop, and reproduce (Cordier, 
2012).
Research on plant spatial distribution has 
already been conducted in Africa using 
new technologies such as GIS. Notable 
studies include Thiombiano et al. (2006) 
on the influence of climatic gradients on 
the distribution of Combretaceae species in 
Burkina Faso; Koffi (2008) on the spatial 
structures of phytogeographical distribution of 
Acanthaceae in Central Africa; Ndayishimiye 
(2011) on the diversity, endemism, geography, 
and conservation of Fabaceae in Central Africa; 
Laouali et al. (2016) on the geographical 
distribution of Prosopis africana in Niger; and 
Gbesso et al. (2013) on the impact of climate 
change on the geographical distribution of 
Chrysophyllum albidum in Benin. However, 
studies on the impact of current and future 
climate change on the distribution of V. tortilis 
are still lacking.
Indeed, climatic degradation, coupled with 
other anthropogenic factors, has led to 
significant degradation of forest ecosystems, 
including protected areas (Boulain, 2004; 
Sambou, 2004; Ozer and Ozer, 2005; Vroh 
et al., 2010; González et al., 2012). The 
vegetation in the Diffa region consists of 
steppes dominated by V. tortilis (Issa et al., 



2009; Bio et al., 2021). This vegetation faces 
numerous biotic and abiotic challenges and 
preserving its services for the well-being of 
local populations is a critical issue. Beyond 
its ecological benefits, all parts of this species 
are extensively used, including for human 
and animal food, the treatment of diseases, 
and trade (Timothy et al., 1999; Jaouadi et al., 
2016).
The main objective of this study was to 
assess the impact of climate change on the 
geographical distribution of V. tortilis in 
Eastern Niger, by analyzing the climatic 
factors influencing its current distribution and 
predicting its future distribution areas under 
different climate scenarios.

Materials and Methods

Sampling and data collection

Data on the occurrence of Vachellia tortilis
The models cover all Eastern Niger, but the 
presence points were collected in two localities 
that are part of the Great Green Wall area. The 
presence of V. tortilis was recorded during 
vegetation data collection (Phytosociological 
surveys). In each survey, the Global 
Positioning System (GPS) coordinates of all 
the individuals of the species were recorded. A 

total of 374 occurrence points were recorded. 
The database created was supplemented 
with presence points available on the Global 
Biodiversity Information Facility (GBIF) 
website (http://www.gbif.org/occurrence/
download/0001383-171219132708484).

Climate data
Ecological niche modeling requires 
environmental data and presence data (Djotan 
et al., 2018). Among the environmental 
factors considered, climate is undoubtedly 
one of the most important factors influencing 
the distribution and growth of species 
(Thiombiano et al., 2006). The environmental 
data considered were the bioclimatic variables, 
including rainfall, temperature, and their 
derivatives, which are available on several 
download sites, especially on a global scale 
(Platts et al., 2015). However, on a global scale, 
bioclimatic variables do not offer sufficient 
confidence for climate simulations when 
conducting ecological niche modeling studies 
in Africa (Platts et al., 2015). The variables 
used for modeling ecological niches include 
both current and future climate variables. 
The current climate variables, corresponding 
to the period 1950–2000, were downloaded 
from the following link: https://webfiles.
york.ac.uk/KITE/AfriClim/GeoTIFF_150s/
baseline_worldclim/ (Hijmans et al., 2005). 
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Figure 1 Receiver Curve (AUC)
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The future climate variables, corresponding 
to the 2055 horizon based on two scenarios, 
RCP 4.5 and RCP 8.5, were downloaded from 
the link: https://webfiles.york.ac.uk/KITE/
AfriClim/GeoTIFF_150s/africlim_ensemble_
v3_worldclim/ (Platts et al., 2015).
RCPs are climate models based on emissions 
and environmental protection policies, 
which provide insights into potential climate 
change (Stocker et al., 2013). According to 
Meinshausen et al. (2011), RCP 4.5 and RCP 
8.5 are among the most realistic scenarios. 
Based on their respective forecasts, RCP 4.5 
is optimistic, while RCP 8.5 is pessimistic 
(Meinshausen et al., 2011). RCP 4.5 predicts 
a stabilization of radiative forces after 2100 
without exceeding the target value of 4.5 
W.m² (Clarke et al., 2007; Wise et al., 2009), 
while RCP 8.5 predicts an ongoing increase 
in greenhouse gases over time, leading to 
the highest concentration of these gases in 
the atmosphere (Riahi et al., 2007; Djotan et 
al., 2018). For each of these scenarios, the 
ensemble mean model was used (Laouali et 
al., 2016; Djotan et al., 2018). The distribution 
of the species' presence points is shown in 

Figure 1. The climatic variables used to run 
the model are listed in Table 1.

Data processing

Modeling techniques
The niche models were constructed using 
the MaxEnt (Maximum Entropy) modeling 
algorithm (Phillips et al., 2006). The 
contribution table of biovariables and the 
Jackknife table, which evaluates the gain of 
training data, were used to select the five (5) 
variables most likely to explain the species’ 
distribution (Djotan et al., 2018). These five 
(5) retained variables were then used to run 
the model in "cross-validation" mode with 
five (5) repetitions, and the mean values of the 
parameters were applied. These parameters 
include the species logistic distribution model, 
the decision threshold which excludes 10% of 
the presence points in the favorable areas ("10 
percentile training presence"), the Area Under 
the Curve (AUC) validation criterion, and its 
standard deviation (Djotan et al., 2018). A 
decision threshold of 5% was retained. This 

TABLE 1 
Africlim Climate Variables

Codes Meanings
bio1 Annual average temperature
bio2 Mean diurnal difference (maximum temperature – minimum temperature; monthly mean)
bio3 Isothermality (BIO2/BIO7) * 100
bio4 Seasonality of temperature (Coefficient of variation)
bio5 Maximum temperature of the hottest period
bio6 Minimum temperature of the coldest period
bio7 Annual temperature difference (BIO5-BIO6)
bio8 Average temperature of the wettest quarter
bio9 Average temperature of the driest quarter
bio10 Average temperature of the warmest quarter
bio11 Average temperature of the coldest quarter
bio12 Annual precipitation
bio13 Precipitation of the wettest period
bio14 Precipitation of the driest period
bio15 Precipitation seasonality (Coefficient of variation)
bio16 Precipitation of the wettest quarter
bio17 Precipitation of the driest quarter
bio18 Warmest Quarter Precipitation
bio19 Precipitation of the coldest quarter
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threshold minimizes the omission error rate 
on the test of the model and the commission 
error rate on the species presence points, while 
providing a reasonable logistic probability of 
distribution value (Djotan et al., 2018).

Techniques for using MaxEnt results
For data preparation, the Africa data in 
TIF format was uploaded to the AfriClim 
website. The data were then cropped to the 
scale of Niger and converted to ASCII format 
(*.asc) using ArcGIS 10.6 software. ArcGIS 
10.6 and QGIS 3.14 were used to process 
and present the results from MaxEnt. After 
generating maps of favorable areas for the 
species, a classification was performed based 
on the retained threshold value (5%). Areas 
where the logistic probability of distribution 
was below the threshold were defined as 
unfavorable, while areas with values above 
the threshold were classified as favorable 
(Djotan et al., 2018). The study area layer was 
then overlaid on the favorable areas for the 
species' distribution.

Stages of Ecological Niche Modeling
The stages of favorable ecological niche 
modeling are those described by Gbesso et al. 
(2013), namely:
Introduce the geographical coordinates of 

the species' presence into the MaxEnt 
processing algorithm in CSV format (the 
coordinates must be converted to decimal 
degrees).

Integrate the bioclimatic envelopes 
(precipitation and temperature data for a 
specified site, with a minimum surface area 
of 5m x 5m) into the same algorithm. These 
data include the 2000 climate scenarios and 
those predicted for climate change in 2050. 

According to the IPCC (2007), climate 
change scenarios are based on assumptions 
about the functioning of the Earth's climate 
and greenhouse gas emissions.

Evaluate the data integrated into the MaxEnt 
algorithm, which will generate a favorable 
ecological niche model. The prediction is 
based on interpolation of the bioclimatic 
characteristics of each species' presence 
point.

Add geographical boundaries and the outline 
of the study area to refine the interpretation 
of the model.

Mapping and spatial analysis
The modeling results produced by MaxEnt 
were imported into ArcGIS 10.6 software to 
map favorable habitats for V. tortilis under 
both current and future climate conditions, 
using the RCP 8.5 emission scenario. This 
scenario was preferentially used because it 
predicts a situation considered more likely for 
Africa by 2050 (Williams et al., 2007; Gbesso 
et al., 2013). Using the spatial analysis tool 
in QGIS 3.14, the extent of each habitat type 
under present and future climatic conditions 
was estimated by counting the number of 
pixels occupied by each habitat type. This 
allowed for the assessment of the gain or loss 
in the area favorable to the species at the scale 
of the study area, based on climate projections 
(Gbesso et al., 2013).

Results

MaxEnt Model Validation
Table 2 presents an estimate of the relative 
contributions of environmental variables to 
the MaxEnt model. The mean value of the 

TABLE 2 
Contribution of bioclimatic variables of the present

Variables Percent contribution Permutation importance
bio12 56.5 50.4
bio5 13.4 5
bio16 7.2 0
bio7 5.6 10.3
bio2 3.8 10
bio3 3.3 1.4
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endpoint is 0.833 ± 0.009 (Figure 2). The five 
(5) retained variables are bio12, bio5, bio16, 
bio7, and bio2. The values shown are averages 
over repetitions. To determine the first estimate, 
at each iteration of the training algorithm, the 
increase in the regularized gain is added to 
the contribution of the corresponding variable 
or subtracted if the variation in the absolute 
value of lambda is negative. For the second 
estimate, the values of each environmental 
variable are permuted randomly with respect 
to the presence data and the baseline data. 
The model is re-evaluated using the permuted 
data, and the resulting drop in training AUC is 
shown in Table 2, normalized as percentages.

The Jackknife test of variable importance was 
also performed (Figure 3). The environmental 
variable that shows the highest gain when 
used in isolation is bio12, suggesting that 
this variable alone provides the most useful 
information.

Points of presence of Vachellia tortilis
Botanical records, including data from GBIF 
and phytosociological surveys, indicate that 
the species has a wide distribution. It is present 
in all climatic zones, with a particularly strong 
presence observed in the Sahelian and Sahelo-
Saharan climatic zones of the country (Figure 
4).

Figure 2 Gain jackknife regularized on calibration data

Figure 3 Current presence of Vachellia tortilis
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Favorable areas for Vachellia tortilis 
according to current and future climates
The model based on current climate data 
identifies the areas favorable to the species, 
primarily covering the southern strip and 
extending slightly to the north of the study area. 
The extreme northern part of the zone (desert 
area) is not favorable for the species. The 
proportions of favorable habitats for V. tortilis 
in the study area are presented in Table 3. Under 

the current climate, the prediction shows that 
19.8% of the total study area is favorable, 
while the RCP 4.5 and RCP 8.5 scenarios 
predict 32.85% and 30.33%, respectively, 
in the Sahelian and Sahelo-Saharan zones 
(Figure 5). The different scenarios indicate 
that the area of "unfavorable" zones for the 
species distribution is larger than that of 
favorable zones (Figure 6).

Figure 4 Habitats to Vachellia tortilis from the study area

Figure 5 Distribution of areas predicted favorable to the species in the current climate 
and future climates, horizon 2055

TABLE 3 
Proportions of areas favorable to Vachellia tortilis from the study area

Scenarios Not favorable 
(%)

Unfavorable 
(%)

Moderately favorable 
(%)

Favorable 
(%)

Current climate 36.86 21.05 20.29 19.8
RCP 4.5 (Horizon 2055) 31.94 19.92 15.29 32.85
RCP 8.5 (Horizon 2055) 36.26 19.37 14.04 30.33



Discussion

Ecological niche modeling is widely 
recognized as a powerful tool for mapping 
the current and future distribution of species, 
as well as predicting the impact of climate 
change on their distribution (Van Zonneveld 
et al., 2009; Nakao et al., 2010). According to 
Schmidt et al. (2008), models can be seen as a 
simplified representation of reality, providing 
critical bioclimatic data for decision-making 
and identifying potentially suitable new 
areas for the conservation of a given species 
(Schwartz, 2012).
The study highlighted the variables that most 
significantly contribute to the distribution of 
V. tortilis. A total of five (5) environmental 
variables were selected for the model, 
including bio12 (annual precipitation), bio5 
(maximum temperature of the warmest 
period), bio16 (precipitation of the wettest 
quarter), bio7 (annual temperature deviation), 
and bio2 (diurnal temperature deviation). Of 
these, bio12 and bio5 were the most influential, 
reflecting the current climatic conditions 
of the area, particularly the precipitation 
difference between ecological zones, which 
corresponds to the species' high concentration 
in the Sahelian zone.
This study also demonstrates that the 
species has a broad distribution, present 
across all agro-ecological zones, with a high 
concentration in the Sahelian zone (Isohyets 
300 to 350 mm/year). This wide distribution 
is likely due to the species' forage value and 
its ability to withstand drought. After the 
rainy season, V. tortilis forms a fodder bank 
for livestock. Through pastoral mobility, 
animals help disseminate the seeds of the 
species (zoochory). Bio et al. (2019) found 
that the passage of V. tortilis seeds through 
the digestive tracts of animals improves their 
germination. Given the role of herbivores in 
dispersing acacia seeds, grazing could be 
considered an environmental parameter of the 
species' ecological niche, though it may also 
disrupt the species' regeneration (Traoré et al., 
2008).
Furthermore, the study found that climate 

variables alone do not predict the distribution 
of V. tortilis. The areas favorable for its 
distribution have changed from the current 
climate to future climate scenarios. These 
findings align with McClean et al. (2005), Alig 
(2011) and Djotan et al. (2018), who suggest 
that the favorable areas of plant species are 
constantly shifting and will continue to do 
so because of climate change. Pearson and 
Dawson (2003) argue that soil variables 
should be considered when estimating suitable 
habitats for species distribution at scales below 
2000 km. However, Allen et al. (2011) claim 
that soil variables are unlikely to change in the 
future climate, and according to Wixon and 
Balser (2009), defining soil characteristics for 
future climates remains a significant challenge. 
Bio et al. (2020) reported that V. tortilis can 
withstand droughts lasting up to seven days, 
and the nature of the soil is not a limiting 
factor for its development. Therefore, climatic 
factors are likely the primary influences on the 
species' distribution in this area, supporting 
the findings of several authors (Guisan and 
Zimmermann, 2000; Gbesso et al., 2013; 
Fandohan et al., 2013; Laouali et al., 2016; 
Djotan et al., 2018), who have confirmed that 
temperature and precipitation are the most 
effective variables when modeling species 
distribution over large areas.
According to Fandohan et al. (2013), the current 
climate where a species is found represents its 
original ecological niche. It is possible that 
when the species first colonized these areas, 
the climate was significantly different (either 
wetter or drier). The current presence of the 
species is the result of millennia of adaptation 
to various climatic changes. Therefore, future 
climates by 2055 are expected to increase 
the favorable area for V. tortilis from 19.8% 
to more than 30%. This trend in expanding 
favorable habitats is attributed to increased 
rainfall predicted by the two climate models 
(RCP 4.5 and RCP 8.5). As a result, the species' 
potential distribution is not expected to be 
compromised by climate change by 2055, nor 
by local disturbances such as the ecological 
impact of refugees and displaced people.
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Conclusion

In conclusion, this study highlights the 
significant impact of climate change on the 
distribution of Vachellia tortilis in Eastern 
Niger. The results demonstrate that climate 
change may drastically alter the habitat 
suitability for this species, with potential 
consequences for local pastoral practices and 
biodiversity. Our predictive models suggest 
that without adaptive measures, the species 
could face a reduction in suitable habitats, 
leading to challenges for livestock farming and 
forage availability in the region. To mitigate 
the negative effects of climate change on V. 
tortilis and local communities, it is crucial 
to develop and implement climate adaptation 
strategies. These may include the restoration of 
degraded land, the establishment of protected 
areas for the species, and the promotion of 
agroforestry systems that integrate climate-
resilient species. Further research is needed 
to refine the species distribution models 
by incorporating more localized data and 
exploring the impacts of other environmental 
factors, such as land use and soil degradation. 
Monitoring the ongoing effects of climate 
change on V. tortilis will also be essential to 
ensure the sustainability of the species and the 
pastoral systems that depend on it.
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