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Abstract 

Fallow ecosystems provide a significant carbon stock that can be quantified for inclusion in the accounts of global 

carbon budgets. Process and statistical models of productivity, though useful, are often technically rigid as the 

conditions for their application are not easy to satisfy. Multiple regression techniques have been applied to study some 

biophysical phenomena but yet to be applied to carbon stock estimation. Using ecological data from 28 sampling 

locations, the study applied the stepwise multiple regression technique to identify ecological variables that would 

explain carbon stock of fallow vegetation, aged between 3 and 8 years. The procedure generated three predictive 

regression models. The full model, could explain nearly 98% of variability of carbon stock (R2 = 0.979), using cation 

exchange capacity and total nitrogen content of soil and leaf area index as the three predictor variables. Sampling 

inaccuracies could have contributed to the error component of models and sample size increase has been suggested for 

reduction of such errors. The advantage of the method is its simplicity. The paper suggests that the derived models be 

validated before broad application. Also, the cost-effectiveness of the approach should be tested against other 

approaches.  

  

Introduction 

The role of the carbon cycle in contributing to global climate change from greenhouse gas 

emissions continues to be an issue of considerable concern, especially in the context of global 

warming (Roberts, 1994; IPCC, 2001). Though there is much agreement on increasing 

atmospheric carbon dioxide concentration and the concomitant rise in global mean temperature, 

there is still much debate over the exact relationship between climate variability and changes in 

atmospheric carbon dioxide concentrations because of uncertainties over the exact figures and the 

spatial and temporal variations (Foody et al., 1996). 

The carbon balance of terrestrial ecosystems is uncertain, in part due to discrepancies and 

errors in measurements, but, perhaps more importantly, due to methodological problems resulting 

in incomplete accounting (Houghton 2003). Lieth (1975) had long observed this problem and 

blamed the discrepancies in available datasets on lack of defensible methodologies for 

measurements of terrestrial primary production. This has contributed to a poor understanding of 

the role of the terrestrial biosphere, particularly vegetation, in carbon cycling at a range of spatial 

and temporal scales (Houghton & Skole, 1990; Jarvis & Dewar, 1993; Sampson et al., 1993).  

Different types of models are now routinely applied to elucidate ecosystem dynamics, 

especially in the context of regional or global carbon budgets (e.g. Ruimy et al., 1996; Goetz & 

Prince, 1996; Coops et al., 2001; Reeves et al., 2001; Lobell et al., 2002). However, the available 

ground-based data that most of these models require to generate reliable estimates of primary 

production at the regional and continental scales are lacking for large parts of the earth’s 

ecosystems (Seaquist et al., 2003).  

Comparatively, collection of carbon stock data of terrestrial ecosystems has been relatively less 

vigorous in most parts of the developing world than in the developed. Constrained mainly by 

economic woes, primary productivity data of most ecosystems has remained scanty or non-

existent in most developing countries and, for purposes of global carbon budget accounts, more 

need to be done to improve data availability. Even with some of the available data, uncertainties 

exist because productivity measurements of vegetation had frequently been deduced from 

changes in forest extent over time. The main source of information has been the series of 

tabulations from FAO production yearbooks and yearbooks of forest products, compiled by the 
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FAO (Woodwell et al., 1984; Grainger, 1993). The data from such sources are unreliable 

because, as succinctly explained by Hampicke (1979), they are often impregnated with errors.  

Direct field-plots assessment of biomass, either through destructive or non-destructive 

sampling, is adjudged the most accurate and reliable since it is based on direct field sampling 

(Newbould, 1967). However, the approach is laborious, time-consuming and the associated field 

costs are prohibitive and impracticable for routine assessments, even at the farm scale. This has 

largely contributed to the dearth of ground data on primary productivity of many tropical 

terrestrial ecosystems.  

One approach that has, in recent times, gained popularity is the application of multiple linear 

regression techniques to explain biophysical phenomena. For instance, linear regression models 

have been developed in this way by using satellite information and field data to study biomass 

(Häme et al., 1997), net primary production (Rasmussen 1998a) and crop yield (Rasmussen, 

1998b). To the best of the author’s knowledge, the technique is yet to find application in the study 

of carbon stocks, particularly of fallow vegetation in the tropics.  

The study, therefore, implored the techniques of multiple linear regression to identify 

explanatory variables of carbon stocks in fallow vegetation, using ecological parameters that are 

known to influence primary productivity. The objective was to empirically formulate simple 

predictive models for quantifying carbon stocks of fallow vegetation. The study was guided by a 

null hypothesis that predictor variables have no effect on carbon stock variability. The paper 

describes the procedures used and reports on the outcomes. 

  

Materials and methods 

Study area 

The study area is located in the southern forest-savanna transition ecozone in the Eastern Region 

of Ghana (Fig. 1). The zone constitutes a broad ecological area between the dry coastal savanna 

in the south and the dry semi-deciduous forest zone in the north (Hall & Swaine, 1976). The area 

has undergone a dramatic reduction in forest cover and fallow lengths since the 1970s, important 

reductions in fallow lengths over the same period (Gyasi et al., 1994; Amanor, 1994). There is 

also evidence of soil deterioration and infestation by obnoxious weeds, particularly the virulent 

weed, Chromolaena odorata (Amanor, 1994).  

 

 

 

The transitional zone is characterized by 1,260 mm mean annual bimodal rainfall, generally 

adequate to support crop production. Predominantly, the soils are acidic (pH 4.5–6.0), and are 

suitable both for perennial tree crops and annual food crops (Soil Research Institute, 1971; 

Dickson & Benneh, 1988). The human population of the area, estimated to be over 1 million, 

continues to increase. As a result of increasing land usage, the predominantly thick deciduous 

forest vegetation of the past is fast dwindling and being replaced by an expanding mosaic of 

forest-savanna vegetation (Gyasi et al., 1994). 

 

Sample plots selection 

Field work was conducted from the first week of March to the end of October 2000.  Twenty-

eight 20 × 20 m2 plots of different fallow lengths were selected for the study. These comprised 11 

three-year old fallows, eight 4-year old fallows, four 5-year old fallows, and five 8-year old 

fallows. All plots were located on well-drained soils of gentle topography. Plots selection was 

non-random and unequally replicated as it depended on willingness of landowners to volunteer 

fallow lands for the study. The ecological data were collected through field work to include both 

vegetation and soil parameters that are thought to influence biomass accumulation (Newbould, 

1967; Running 1990; Häme et al., 1997; Le Houérou, 1989).  
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Field data collection 

Field data comprised plant and soil measurements. Plant data consisted of plant biomass, stem 

volume (SV) and leaf area (LA).  The soil data were percent soil moisture (SM), percent total 

nitrogen (TN), available phosphorus (AP) and cation exchange capacity (CEC). Direct field-plots 

assessment procedure was used to collect the biomass data (Newbould, 1967). Stem volume and 

leaf area were estimated as described by Anderson & Ingram (1989). Because tree felling was not 

permissible, biomass of canopy and sub-canopy trees were estimated from allometric formula as 

recommended by the Tropical Soil Biology and Fertility (TSBF) Programme (Anderson & 

Ingram, 1989) below; taking into account the annual rainfall regime of the study area, which is 

below 1500 mm (Dickson & Benneh, 1988; Adu & Asiamah, 1992; Attua, 1996): 

y = 34.4703 – 8.0671D + 0.6589D2  …………….  (n = 32; R2 adj = 0.67)  

where y is the biomass in kilograms, D is the diameter of tree at breast-height in centimeters and 

n is the sample size. Soil samples were collected per sample plot with an augur to a depth of 20 

cm. Five samples were taken per plot and composited.  

 

Laboratory analyses 

Laboratory analyses of biomass involved dry weight determination of all collected sub-

samples of plant parts. The carbon equivalents of total dry matter per plot were obtained with a 

conversion factor of 45% (Ajtay et al., 1979) and expressed in Megagram carbon per hectare 

(MgCha-1). Soil samples were also analyzed for bulk density as recommended by Schlesinger 

(1984). Laboratory procedures for chemical analyses of soil samples followed those of Black 

(1965) and Kalra & Maynard (1991). 

 

Data analyses 

The Statistical Package for Social Sciences (SPSS 8.0) for Windows programme was used for 

statistical analyses of the data. Multiple linear regression methods were applied to analyse the 

data and develop regression models. This is considered the best approach for estimation of a 

continuous variable (Saukkola & Jaakkola 1983; Oza et al., 1989). 

In searching for a statistical explanation of carbon stocks in fallows, a correlation matrix 

(Pearson’s correlation coefficient) was first applied to the datasets (Kinnear & Gray, 1999). This 

is vital when sorting out suitable predictor variables for regression analysis as well as finding 

intercorrelated variables to be considered in the analysis (Bryman & Cramer, 1997; Kinnear & 

Gray, 1999).  

Because Pearson’s correlation coeffi-cient is very vulnerable to the leverage exerted by 

extreme values or atypical data points (Kinnear & Gray, 1999), normal probability plots were 

done to identify all extreme values or outliers in the data. Though logarithmic transformations 

were also tried, the results generally did not improve the distribution and, therefore, the original 

data was retained. 

The stepwise regression techniques were used for estimation of carbon stocks. This method, 

according to Shaw & Wheeler (1996), is useful when trying to find the best subset of predictors. 

The SPSS programme used offered different kinds of procedures within this context: forward 

selection, backward elimination and standard stepwise regression. With the forward selection 

method, predictors are added one at a time provided they meet an entry criterion and cannot, 

subsequently, be removed while, with the backward elimination method, predictors are all present 

initially and are removed one at a time if they do not meet a retention criterion (Kinnear & Gray, 

1999). 

The standard stepwise regression procedure was applied. This procedure combined both the 

forward selection and backward elimination methods, and is considered comparatively superior to 

either the forward selection or the backward elimination procedures (Kinnear & Gray, 1999). The 

statistical criteria used for selection or removal of variables from regression are often based on 
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either the significance (probability) of the F value, or the F value itself (Bryman & Cramer, 1997; 

Kinnear & Gray, 1999). The commonly accepted minimum probability of F-to-enter and F-to 

remove, quoted, respectively, as d” 0.05 and e” 0.10, were used. This stopping rule selected 

variables with a high partial correlation coefficient and a minimum contribution to the mean 

squares (Afifi & Clark, 1984; Kinnear & Gray, 1999). 

 The criterion used for testing the significance of the regression algorithms was that a calculated 

F-ratio exceeded the tabulated F value, and, at the same time, the individual regression 

coefficients were found to be significant at the p < 0.05 level. Thus, the chance was better than 

5% that an additional observation would support the regression model found (Afifi & Clark, 

1984; Rasmussen, 1998a). 

To indicate the reliability of a regression model, the residuals of the regression equations were 

analysed. The requirement was that the residuals should be a normal distribution around the 

regression line, and the degree of scatter around the line should not vary. This meant the residuals 

should have zero mean and unit variance over all the observed independent terms (Shaw & 

Wheeler, 1996; Kinnear & Gray, 1999). Also, to test for a possibility of autocorrelation in the 

regression residuals, and to accept or reject the null (H
o
) hypothesis of absence of autocorrelation, 

the Durbin-Watson test (Kinnear & Gray, 1999) was used at critical bounds of 0.05 significance 

level. 

 

 

Results and discussion 

The descriptive statistics of all variables explored as explanatory variables of carbon stock of 

fallow vegetation are shown in Table 1. The distribution pattern of each variable was examined 

using probability plots and histograms.  

The strength of association between variables, using Pearson’s correlation is indicated in Table 

2. All variables correlated positively with C
s
. A consistently high positive correlation of more 

than 0.800 was found between C
s 

and variables SV, LA, SM, TN, and CEC. The highest 

correlation was with CEC (r = 0.965) and the lowest was with AP (r = 0.674).  

TABLE 1 

Descriptive statistics of all variables explored for model development. 

 

Variables Units Minimum Maximum Mean Std. Deviation 

 

C
S 

MgCha-1 11.112 24.327 16.101 3.722 

SV m3ha-1 12.56 45.11 22.03 8.84 

LA m2kg-1 7.11 8.26 7.58 0.32 

SM % 7.14 7.80 7.40 0.19 

TN % 0.08 0.21 0.14 3.00 x 10-2 

AP mgkg-1 4.14 5.81 5.02 0.49 

CEC Cmol
c
kg-1 10.56 18.51 14.60 2.34 

 

n= 28; C
S
 = Carbon stock; SV= Stem volume; LA= Leaf area; SM= Soil moisture;  

TN= Total nitrogen; AP= Available phosphorus; CEC= Cation exchange capacity. 

 

TABLE 2 

Pearson’s correlation coefficients for variables included in analysis (n = 28, *p < 0.05; **p < 0.01, 2-tailed) 

 

Variable        

C
s 

0.000       

SV 0.825** 0.000      

LA 0.864** 0.722** 0.000     
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SM 0.901** 0.854** 0.797** 0.000    

TN 0.927** 0.774** 0.751** 0.817** 0.000   

AP 0.674** 0.539** 0.419* 0.631** 0.571** 0.000  

CEC 0.965** 0.764** 0.830** 0.871** 0.850** 0.721** 0.000 

 

 

Table 3 shows a summary of linear regression algorithms generated through the approach. 

Each regression equation was statistically significant at the p-value of 0.05. They are represented, 

respectively, by equations 1, 2 and 3. Table 4 shows the descriptive statistics of the analysis of 

variance of the generated regression models. 

 
TABLE 3 

Descriptive statistics of generated regression models 

 

No. Model parameters R2 R2adjusted Standard error F-statistic      Sig. F change 

                               of estimates 

 

1 a CEC + b 0.930 0.927 1003.880 346.725 0.000 

2 a CEC + b TN + c 0.972 0.969   654.062 429.582 0.000 

3 a CEC + b TN + c LA + d 0.979 0.976   579.890 368.929 0.015 

 

 

C
S
 = 1532.40 CEC - 6266.079 (R2 = 0.930; R2adj. = 0.927)  (1) 

C
S
 = 1010.938 CEC + 47910.577 TN - 5170.666 (R2 = 0.972; R2adj. = 0.969)   (2) 

C
S
 = 843.728 CEC + 44815.002 TN + 1787.314 LA - 15859.052  (R2 = 0.979; R2adj. = 0.976)  

  (3) 

 

A high level of explained C
S
 variance (R2 > 0.90) was obtained with the inclusion of either 

CEC or TN in the regression. The joint use of CEC and TN as predictor  variables improved the 

regression further by 0.042 (Equation 2). The inclusion of LA as the third predictor variable 

improved the accuracy of prediction of the dependent variable by a further 0.007 (Equation 3). 

The H
0
 hypothesis of absence of autocorrelation in the regression residuals was also accepted 

since the Durbin-Watson test used at critical bounds of 0.05 significance level was found to be 

significant.  

The results (Table 3) indicate that the full model (Equation 3) explained approximately 98% 

variability in C
s
 (R2 = 0.979). The reduced models (Equations 1 and 2) comparatively had reduced 

R2 values of 0.930 and 0.972, respectively. Analysis of variance (ANOVA) results (Table 4) 

indicated that R2 of all three models were significant at p-value of 0.05. The null hypothesis of no 

linear regression of C
s
 on the predictor variables (CEC, TN and LA) was, therefore, rejected and 

the alternate hypothesis accepted in all cases. Thus, a significant portion of variability in C
s
 is 

explained by CEC, TN and LA. Compara-tively, the error terms (error sum of squares) of the 

models probably attributable to sampling, reduced greatly in the full model because it had the 

minimum contribution to the mean squares (Table 4). These errors could probably have been 

reduced by increasing the sample size and/or including other statistically eligible predictor 

variables.  

 
TABLE 4 

Analysis of variance (ANOVA) of derived models (n = 28, p < 0.05, 2-tailed) 

 

Model No. Source of variation Sum of squares df Mean square F-statistic Significance F 
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1 Regression 309. 279 1 309.279 346.725 0.000 

 Error  23.179 26 0.892   

 Total 332.458 27    

2 Regression 323.046 2 161.523 429.582 0.000 

 Error 9.412 25 0.376   

 Total 332.458 27    

3 Regression 325.396 3 108.465 368.929 0.000 

 Error 7.062 24 0.294   

 Total 332.458           27     
 

 

Conclusion 

The results of the study support the use of multiple linear regression for estimation of carbon 

stocks in fallow vegetation. The advantage of the method is its simplicity. However, because 

model parameters are derived from field plot measurements, they already embody the response of 

a particular landscape to C
s
 change and, therefore, the use of the models must be done with care, 

or an unrealistic prediction could result. At this stage, derived models are site-specific and have 

limited application. They, thus, require validation for reliable broad application. Also, the cost-

effectiveness of the approach need to be tested against other approaches. A first step would be to 

check that models correctly predict carbon stocks on new fallow plots under similar soil and 

climatic conditions. Also, the current study could probably gain from increasing sampling size 

and exploring other ecological data. Nevertheless, this study could serve as an initial step for 

improving carbon estimation in tropical fallow vegetation.  
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